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Laboratory and numerical experiments on non-steady convective flows in a 
porous medium are reported. The main objective is to note the detailed com- 
parison found between the time-dependent solutions and the time-like develop- 
ment of the iterative solutions of the steady equations originally pointed out by 
Garabedian (1956) and others. 

Two flows are chosen for study. The first is the flow which develops when 
a blob of hot fluid is released at  the base of a porous slab. The second is the flow 
which develops when a portion of the base of a porous slab is suddenly heated. 
The former flow is very simple and ideally suited for establishing the numerical 
scheme. The latter flow, however, produces several unexpected features. The 
gross features of the time development, when the motion is strongly non-linear, 
show an alternation between periods of slow gradual adjustment and periods of 
rapid change. 

1. Introduction 
As has been frequently pointed out (Garabedian 1956), the behaviour of the 

numerical solution of a system of steady elliptic equations by an iterative pro- 
cedure develops in a time-like manner. Now in a typical problem with mesh 
spacing of order 1/30, the time-dependent problem can take of order lo2 times 
as long to solve as the corresponding steady problem. If one is interested mainly 
in the gross features of the development of the flow, that is in the large eddies, it  
would be very convenient to solve the steady problem instead provided one 
could relate the number of iterations to the time. The demonstration that this is 
indeed possible and what one must sacrifice is a major task of this paper. 

Free convection in a porous medium provides a convenient flow for this study. 
The numerical calculation is very straightforward and laboratory measurements 
made in a Hele-Shaw cell, which provides a two-dimensional analogue of a 
porous medium, are readily obtained for comparison with the numerical solu- 
tions. The numerical method for the iterative solution of the steady problem is 
that previously used by the author (1966a), while the time-dependent solution 
is obtained in essentially the same way except for the addition of the procedure 
for taking a step in time. 

The problem is formulated and the numerical and experimental methods are 
described in $0 2 and 3. Numerical and laboratory studies are then presented for: 
the rise of an isolated buoyant element (3 4) ; and the sudden heating of a portion 
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of the base of the flow region ($6  5 and 6). These studies allow verification of the 
numerical solutions and reveal details peculiar to the transient motions. Finally, 
in $ 7 ,  we discuss the suggestion of Garabedian. 

2. The numerical method 
2.1. The system of equations 

Consider the motion of a fluid generated in a rectangular prism filled with a 
homogeneous porous material by heating the base. The field equations (Wooding 
1957) for two-dimensional motion in dimensionless form? reduce to 

w = Ae,, v=$ = w ,  

F = we- a($, el,  aept = P. 
Note that the velocity q = ( - $$, $,J and the vorticity o = -ju where j’ is unit 
vector parallel to the y-axis. In  (1): A = krgHAT/vK, is the Rayleigh number, 
~ is the stream-function, 0 is the temperature; a($, 0) is the advection of heat, 
where we write a for the Jacobian operator; and P is proportional to the rate at 
which a fluid element is gaining heat. These equations indicate that vorticity is 
generated by the horizontal gradient of the buoyancy forces and that heat is 
transferred both by conduction and advection. We observe that the system is 
non-linear solely because of the advection of heat, and time dependent solely 
through the thermal capacity of the medium. This is, therefore, one of the 
simplest time-dependent non-linear systems. 

For the purpose of the discussion below we consider a typical problem in which 
the cavity of unit height and horizontal extent e is uniformly heated over a part 
of its lower surface of extent 1, the other walls being held at  zero temperature. 
Therefore, we chose initial conditions $ = 0 = 0 everywhere for t < 0, and 
boundary conditions: 9 = 0 on the walls; 0 = 1 on $(e- I )  < x < $(e+ I )  and 
z = 0 for t > 0; and 0 = 0 elsewhere. For the study of the hot blob we chose 
l/e < 1 and also set 0 = 0 everywhere on the walls at a time t,  > 0. We note that 
the above boundary conditions apply to impermeable conducting walls. 

2.2. Arrangement of calculations 

A suitable finite-difference representation of (1) is readily found by well-known 
methods (Fox 1962). The equations are solved as written in (1) in the order 
(a ,  b, c, d ,  a ,  .. .) for a chosen number of time steps. Except for the time step, the 
only point for comment is that the Poisson equation (1 b)  is solved by repeated 
application of Leibmann’s extrapolated method with alternating directions of 
scan (Elder 1966~).  In the present calculations, for each time step I have used 
eight applications of Leibmann’s method. This is sufficient to obtain the new 
solution of (1 b) to a precision of about 1 %. 

t The notation follows Elder (19666). The field variables have been made dimensionless 
by choosing units of length, temperature, velocity: the height of the box, H ;  the excess 
temperature of the heated region, AT ; K , / H ,  where K ,  is the thermal diffusivity of the porous 
medium. A Cartesian co-ordinate frame 0-XYZ,  with its origin in the lower left-hand 
corner of the prism, has O X  horizontal, 02 vertical such that motion is confined to planes 
y = const. 
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The integration of (1 d )  one step forward in time is performed in the simplest 
manner, i.e. we replace 8 by 0 + FSt where St is the step in time. Now there are 
two well-known restrictions on St. First, for a flow dominated by diffusion we 
require 

where /3 is a, number and d is the mesh spacing. Numerical analysis shows that 
numerical instabilities develop (in two-dimensions) for /3 = 0.25. Therefore, only 

( 2 )  a 3 stla2 < p, 

0 10 20 30 
At 

FIGURE 1. The role of a on the stability of the outer iteration. Mean Nusselt number 3 as 
a function of time t at Rayleigh number A = 200, mesh spacing d = 1/10 for the short- 
heater problems (PM 223 and 230). 

small steps in time are permitted. This observation has led to considerable study 
of more elaborate time-step algorithms for which p can be much larger. These 
procedures are of no advantage here since at large Rayleigh numbers many of 
the phenomena proceed so fast, due to dominance of the advection, that using 
a = 0.25, would lose much of the detail and often lead to numerical instability. 
Such advective instabilities will certainly arise if the second restriction, noted 
by Courant, Friedrichs & Lewy (1928), is not satisfied. A fluid particle must not 
move a distance greater than the mesh spacing during a time increment. In  the 
present calculations neither of these restrictions has been an inconvenience and 
the Courant, Friedrichs, Lewy condition has proved an excellent guide in choosing 
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St. If we chose, for a given geometry and boundary conditions, values of d and 
St just sufficient to avoid advective instabilities the computing time for flows 
dominated by advection is independent of the Rayleigh number. 

2.3. Stability of the numerical solutions 

The role of a! in the stability of the outer iteration has been determined for the 
problems below. A typical result for the problem of sudden heating, obtained 
while the results of figures 4 and 6-8 below were determined, is shown in figure 1. 
The mean Nusselt number 

8 = - - [8&, 0) +On@, l)] dx 
2e je 0 

(3) 

has been found as a function of the time t for two values of a! at a Rayleigh 
number A of 200. The curve for ct = 0.2 is fairly smooth, the various bumps being 
identifiable with various details of the flow. The curve for a! = 0.25 follows the 
other curve in broad detail but some of the bumps are greatly enhanced and 
extra bumps are present, for example here at A t  = 14. Further, during the 
interval A t  = 8 to 16, we find that 8 > 1 at some points within the cavity. 
Clearly this is not permissible and the solution must be rejected. Nevertheless, 
it  is of interest to enquire into the nature of the region 8 > 1. It is seen from the 
temperature distribution to correspond to two blobs of hot fluid which very 
rapidly break off from each end of the lower heated region and rise vertically. 
Now this is close to what actually happens. Clearly therefore if we chose a value 
of a! which is too large to follow important transient details of the motion the 
solution will be erroneous. It is interesting to note, however, that such a transient 
instability is not necessarily disastrous, since here the solution returns to the 
stable one. 

3. The experimental method 
All the experiments were performed in Hele-Shaw cells. These cells have 

already been used for a number of studies of flows in porous media and are well 
described elsewhere (e.g. Wooding 1963; Elder 1966b). If a viscous fluid flows 
between two sheets of insulating material held a small distance a apart, Hele- 
Shaw (1898) showed that the motion was closely similar to that in a porous- 
medium of permeability +za2. 

The apparatus was similar to those previously used by the author (Elder 
19666). The plate spacing was 4-0mm, the depth of fluid 5cm, the width of the 
cavity 20 em. The fluid used was silicon oil MS 2 O O j l O O  centistoke. Heat was 
supplied electrically. For the blob study the heated portion had a width of 0-5 cm 
and the remainder of the walls were made of Perspex. For the study of sudden 
heating the heated portion had a width of 10 cm, the upper surface was cooled by 
means of a thermostatic unit and the remainder of the walls were made of 
Perspex. The use of these partially insulating walls rather than conducting ones 
is a permissible convenience since the role of the boundary conditions on these 
walls is a minor one. 
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4. The rise of a hot blob 
To establish the numerical scheme one needs for the initial study a simple flow 

which is reasonably well understood. The rise of a hot blob of fluid in a porous 
medium is the simplest example that comes to mind. Our task is simply to see if 
the numerical procedure works and the solutions are in reasonable agreement 
with laboratory experiment. Once this is established we are justified in proceeding 
to more elaborate problems. 

- 
t = 0.00625 $7.328 Source 

0 0.2195 
FIGURE 2. Isotherms (dotted lines) and streamlines (solid lines) for a hot blob. A = 800, 
d = 1/40, a = 0.1, I = 0-1. The heater was left on for 40 time steps; the figure shows the 
flow after 100 time steps (PM 303). Note, in these figures the vertical scale is 5/3 of the 
horizontal scale. 

Consider a blob of hot fluid produced by suddenly heating a portion of extent 1 
of the lower surface of a slab of porous material for a time t,. Clearly if we wish 
to study an isolated hot blob its dimension should be considerably smaller than 
those of the cavity. For this reason we choose 1 < e. Of course we could suddenly 
release a quantity of heat in the interior of the cavity but the method used here 
has some bearing on the flow discussed below. Also we observe that if t ,  is suffi- 
ciently small the blob never detaches itself from the lower surface. This is simply 
because if the heated region is small the motion is dominated by diffusion. We 
may estimate crudely a minimum (dimensionless) time t ,  for the release of a blob 
by requiring that the Rayleigh number based on the thickness of the heated 
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region near the source reaches the critical value of 4n2 (Lapwood 1948). The 
thickness of the heated layer is of order 24t (Carslaw & Jaeger 1959, 9 2.2). Hence 

(4) 
the minimum time is min(t,) N 400/A2, 

which corresponds to a minimum real time 4004 ~/lcrghT)~:  a result independent 
of H ,  as it should be. 

Figure 2 shows an example of a hot blob, obtained with A = 800, t, = 0.0025 
and a = 0.1 at time t = 0.00625, when it has risen about half way up the cavity. 
We observe the localization of the isotherms, the pronounced gradient at the 
front of the blob and that the streamlines are much more extensive than the 
isotherms. At this stage the blob is fairly well isolated from the walls (the mean 
heat flux through the upper surface is 2.89 x 10-l2) but is slowly decelerating. 
The maximum value of the stream function over the mesh has fallen from its 
maximum value of 11.94 (at time t = 0.0025) to its present value of 7.328. By the 
time t = 0.01 the blob will have begun to spread out on the upper surface. 

Figure 2 can be compared with the experimental results of figure 3 (plate 1). 
Figure 3 was obtained in the following way. After some trial and error the heating 
current required to give A = 800 is determined. Also, we obtain the actual time 
from the time unit H2/Km = 2.4 x 104sec for H = 5 cm and 100 centistoke silicon 
oil. Hence, from the above dimensionless times we required the heater to be on 
for 60 sec and the photograph to be taken at 150 see. The photograph shows that 
the blob is close to the predicted position. The agreement in time is quite good 
and suggests that the numerical scheme is valid. The agreement is not perfect, 
largely because the heater has a finite thermal capacity. 

5. Continuous heating over a short length 
Consider now the flow produced by heating the base of the layer from t = 0. 

Here we study the flow with e = 4,1= 2. A system of large horizontal extent will 
be studied in 8 6. 

Figure 4 shows the distributions of $ and 0 for the time interval t = 0 to 0.1 
at a Rayleigh number of 400. At first the layer becomes heated as if it  were a 
semi-infinite slab except close to the ends of the heater. The first motion is a set 
of eddies growing in this region. They advect heat away from the ends of the 
heater to produce a small bump in the isotherms. By the time 0.005 a small eddy 
of reverse circulation is associated with the end eddies. At time 0.01 these double 
eddies are well established and produce a rapidly rising column of hot fluid above 
the ends of the heater. During the interval 0.01 to 0.02 a further set of eddies 
grows near the ends and a rapid adjustment of the end eddies occurs. In  addition, 
a small double eddy, rather similar to the blob studied in $4, forms over the 
middle of the heater. This double eddy now grows rapidly and by the time 0.05 
has reached its maximum growth. The end eddies have now merged into single 
large eddies. These large eddies continue to grow and by the time 0.1 have 
absorbed the double eddy. The temperature distribution follows a similar pattern. 

These changes are very close to those observed in the laboratory. Even minor 
details such as the appearance and growth of the blobs and the wiggles in the 
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I QQ Q 1 
$ 714 t = 0005 e t = 0005 

I I 

$ 13.21 t = 001 e t= 001 

$r 1439 t = 002 

$1564 L = 0.05 

$25.99 t = 0.075 

$1759 r = 0 1  

e t = 002 

8 t = 005 

0 t = 0.075 

e t=0I  

FIGURE 4. Stream-function and temperature distributions for the short-heater problem at 
various times: A = 400, d = 1/20, e = 4, I = 2, a = 0.1. The curves show 0.2 and 0.6 of 
the maximum value (PM 275). 
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streamlines above the heater are similar. Figure 5 (plate 2) shows two visualiza- 
tions of the flow at t = 0.025, 0-05. The agreement is sufficiently good to give 
considerable confidence in the numerical solution. Indeed, the numerical solution 
can now be used to reveal detailed limitations in the Hele-Shaw cell, but this 
matter need not concern us here.? 

f 83.91 t=@1 

211 

FIGURE 6. Vertical heat flux ( 5 )  for the flow of figure 4. The upper part of the 
figure shows the distribution off, the lower part shows f on z = 0. 

A quantity of considerable interest is the vertical heat flux 

f = -o,+f3$-z, ( 5 )  

the distribution of which is shown in figure 6 at  t = 0.1. The bulk of the heat is 
carried in the hot plume which rises above the centre of the heater. Heat is 
advected into the base of the plume through the thermal boundary layer near the 
heater. The small regions labelled 2 and - 2 (i.e. t- 0.2 of the maximum value off) 

t The most noticeable difference is observed in the time interval t = 0--0.02, especially 
if the apparatus has not been left standing for an hour or so. Small blob-like eddies appear 
almost immediatoly between the end cells. By the time t = 0.02 these have been absorbed 
by the motions described above. Undoubtedly they arise from small residual disturbances, 
being predicted by the usual linear stability theory. They are readily simulated numerically 
and have been described in a discussion of thermal turbulence of geophysical interest 
(Elder 1966~).  
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FIGURE 7. Nusselt number for the top and bottom surfaces as a 
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function of time 

20 40 60 80 

At 

FIGURE 8. The maximum value of the stream function for the problem of 
figure 4 at A = 400, 200, 100 (PM 275, 224, 242). 
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correspond to small blobs which grow near the ends of the heater and become 
partially detached from the heater as they are advected through the heater 
boundary layer. Figure 6 also shows f(x, 0) the rate at which heat enters the slab. 
We notice that f(x, 0) is not quite symmetrical. This is due to the advection of 
the detached blobs being somewhat different on the two sides of the centre line. 

The development of the system is summarized in figures 7 and 8. Figure 7 
shows the mean Nusselt number on both z = 0 and 1 for the flow of figure 7. For 
a time less than 32/A the heat flow into the base of the slab exceeds that out of 
the layer so that heat is accumulating in the slab. Indeed there is no perceptible 
heat flow out of the slab till time 6/A. The various wiggles reflect the growth and 
adjustment of the eddies in the slab. Beyond At = 40 only minor adjustments are 
necessary before equilibrium is established. 

Figure 8 shows the maximum value of the stream function for the present 
problem with A = 400 and for A = 100 and 200. The most striking feature here 
is the great increase in detail and pronounced accelerations at the higher values 
of A .  

In  this study a useful simplification is to correlate variables of interest with 
a velocity unit proportional to A and a time unit proportional to 1/A. Inspection 
of (1)  shows that this would be strictly correct if the diffusion of heat could be 
ignored everywhere. Clearly this is not permissible near the boundaries, but as 
shown for example by figure 8 this is a good approximation. This is an important 
result for the extrapolation of these results to  geophysical problems where the 
Rayleigh number can be of order lo5. However, as figure 8 clearly indicates the 
extrapolated flow will lack much of the detail of the actual flow. 

6. Continuous heating over a long length 
For a horizontally infinite slab clearly the transient motions which occur 

immediately after t = 0 will be similar a t  every location. For a long but finite 
heater that this is not the case is shown in figure 9. This shows the distribution 
of @ for a slab with e = 10,l  = 8 a t  A = 200. The initial motion is very similar to  
that of figure 4 with the growth firstly of a pair of end-cells followed by the 
successive growth of a string of cells above the heater. The encroachment of these 
cells inward from the ends proceeds with a roughly constant horizontal velocity 
dX/dt, where Xis the position in the fluid separating the regions of cellular motion 
from nearly stagnant fluid. We find 

IdX/dtI x 30. (6) 

Following this encroachment there is a long period of gradual adjustment, till 
finally at  this rather small Rayleigh number the flow is extremely symmetrical. 

The gross features of the flow are shown in figure 10, which presents the mean 
Nusselt number (3) and the maximum value of the stream function. The remark- 
able feature of these curves, particularly for N, is the marked variation between 
periods of rapid change and gradual change. We can identify the places where 
aZ/at is large and $ has a maximum with the birth of a new pair of eddies. The 
author (1966b) has already suggested as a result of some laboratory studies that 
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FIGURE 9. Distribution of the stream function for the long-heater problem at 
various times: A = 200, d = 1/10, e = 10, I = 8, 01. = 0.2 (PM 225). 
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such phenomena exist and that they can provide an alternative explanation to 
that given by Malkus (1954) for his intriguing observations of breaks in the 
experimentally determined 8 ( t )  in an apparatus which was cooling down. The 

1 1 

, 

10 

$ 

0 
0.1 0.2 0.3 

t 

(b )  

FIGURE 10. ( a )  The Nusselt number and ( b )  the maximum value of the 
stream function for the problem of figure 9. 

increments in the curve of 8 in figure 10 are nearly equal, corresponding to 
a change. 

AN M 0.4. (7) 

This is not surprising, since each new cell can be expected to transport an equal 
increment of heat. 
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7. On the time-like behaviour of the iterative solution of the steady 
problem 

Since we can now solve both the time-dependent and the steady problems we 
can investigate in detail the suggestion of Garabedian (1956) and others. Our 
task is to relate the number of outer iterations s of the steady equations to the 
time t and see to what extent the details of the two solutions are related. The 
following examples are typical of this relationship. 

~ 

I I 

-.-.-+-. -.-...h.~..,+- +-+-+-+-+- 

+ Ph4 260, Steady 

0 PM 261, Time-dependent 

1 005 01 0.2 
t 

0.5 

FIGURE 11. Comparison of the maximum value of the stream function in the short-heater 
problem for the solutions of the steady and the time-dependent problem. A = 80, d = 1/10. 

Figure 11 presents solutions for the short-heater problem of 5 5 at a Rayleigh 
number of 80. The maximum value of the stream function is shown as a function 
of t and of s, where s has been related to the time by 

t = 4*33d2s. (8)  

Numerous tests show that for the same event sd2 is a constant as we change d, and 
the coefficient 4-33 is chosen so that the two sets of data agree as much as possible. 
As can be seen the fit is very good; discrepancies are less than 1 yo. 

Inspection of the stream function distributions does, however, reveal con- 
siderable differences between the two solutions. An example of this is shown in 
figure 13 which gives solutions for the long-heater problem of 5 6 at  a Rayleigh 
number of 80. We find an identical relation (8) between t and s but the distribu- 
tions are shown at the nearest corresponding values. (Strictly we should show 
the time-dependent solutions at times 0.0433, 0.0866, etc.) The broad features 



622 J .  W .  Elder 

of the development are similar, including the nearly uniform advance of the 
string of eddies, but the eddies of the steady problem are somewhat larger .and 
make their first appearance a little later. In  addition the final solutions have 
10 Rayleigh cells for the time-dependent problem and 6 for the steady problem. 
This result is of considerable interest since it demonstrates the non-uniqueness 

1 

i Q t=004 

(a)  Time-dependent (PM 221) ( b )  Steady (PM262) 

FIGURE 12. Comparison of the stream function in the long-heater problem for the steady 
and the time-dependent solutions. A = 80, d = 1/10. Only the left-hand half of the flow 
is shown. 

in such systems. As well as the boundary conditions, one must specify the path 
the system has followed in order to specify the final solution (cf. Elder 1966b, $5) .  

Some features of the time-dependent problem do not appear in the steady 
problem. In  the problems studied so far, these features have been the small 
eddies, such as the blobs which rise above the heater in figure 4 at time 0.02. 
The steady solution is restricted to the large eddies, that is those motions which 
extend across the narrowest dimension of the cavity. 

This simple study suggests that much useful information is available by 
judicious use of the steady solution by regarding s as a time. Clearly the coefficient 
4-33 in (8 )  will depend somewhat on the problem and very much on the arrange- 
ment of the outer iteration. However, where the time-dependent solution is 
available it is a simple matter to find the appropriate value. On the other hand, 
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if the time-dependent solution is not available a crude estimate (within a factor 
of 3 or so) can be obtained by the following device, noted in Elder (1966 b, 5 4.2). 
Obtain the steady solution with A = 0, using a set of boundary conditions for 
which the purely conductive solution is known. We observe that the fields decay 
exponentially, as is to be expected (Carslaw & Jaeger 1959), e.g. a slab cools with 
a time constant of l/+. From the steady solution one readily finds the corre- 
sponding number of iterations s and hence the corresponding time. A very 
convenient and economical method for problems which have a steady or nearly 
steady state is to solve the time-dependent problem for the time interval in which 
the most rapid changes occur then use this solution as the test function for the 
steady equations. 
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